


## **Energy Exam Questions**

Figure 2 shows a student before and after a bungee jump.

The bungee cord has an unstretched length of 20 m.

Figure 2

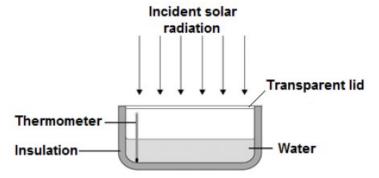


For safety reasons, it is important that the bungee cord used is appropriate for the student's weight.

Give two reasons why

|   | [2 marks] |
|---|-----------|
| 1 |           |
|   |           |
| 2 |           |
|   |           |




2. The student jumps off the bridge.

Complete the sentences to describe the energy transfers.

Use answers from the box.

[3 marks]

| elastic potential                        | gravitational potential                                              | kinetic       | sound          | thermal     |
|------------------------------------------|----------------------------------------------------------------------|---------------|----------------|-------------|
| Before the stude                         | nt jumps from the bridge he ha                                       | s a store of  |                |             |
|                                          | ene                                                                  | ergy.         |                |             |
| When he is fallin                        | g, the student's store of                                            |               | energy         | increases.  |
| When the bunge                           | e cord is stretched, the cord st                                     | ores energy a | ıs             |             |
|                                          | ene                                                                  | ergy.         |                |             |
| A student investig<br>surface at her loo | gated how much energy from thation.                                  | ne Sun was ir | ncident on the | Earth's     |
|                                          | ited pan of water in direct sunli<br>of the water to increase by 0.6 |               | sured the time | it took for |
| The apparatus sh                         | ne used is shown in Figure 14.                                       |               |                |             |
|                                          |                                                                      |               |                |             |
|                                          | Figure 14                                                            |               |                |             |



Choose the most appropriate resolution for the thermometer used by the student.

[1 mark]

Tick one box.

0.1 °C

1.0 °C

Answers: gcserevisionbuddy.co.uk/answer-253



| The energy transferred to the water was 1050 J.                        |           |
|------------------------------------------------------------------------|-----------|
| The time taken for the water temperature to increase by 0.6 °C was 5 n | ninutes.  |
| The specific heat capacity of water is 4200 J/kg °C.                   |           |
| Write down the equation which links energy transferred, power and tir  | me.       |
|                                                                        | [1 mark]  |
| Calculate the mean power supplied by the Sun to the water in the pan   | l.        |
|                                                                        | [2 marks] |
| Average power =                                                        | W         |
|                                                                        |           |
| Figure 1 shows a cyclist riding along a flat road.                     |           |
|                                                                        |           |
| Figure 1                                                               |           |
|                                                                        |           |
| Complete the sentence.                                                 |           |
| Choose answers from the box.                                           | [2 marks] |
| chemical elastic potential gravitational potential                     | kinetic   |
| onemed classe potential gravitational potential                        | Killette  |
| As the cyclist accelerates, the                                        |           |

Answers: gcserevisionbuddy.co.uk/answer-253

the cyclist increases.



|                           | is 80 kg. The speed of the cyclist is 12 m/s.                           |
|---------------------------|-------------------------------------------------------------------------|
| Calculate the kinetic en  | ergy of the cyclist.                                                    |
| Use the equation:         | kinetic energy = $0.5 \times \text{mass} \times (\text{speed})^2$ [2 ma |
|                           |                                                                         |
|                           | Kinetic energy =                                                        |
| Figure 13 shows a lift in | nside a building.                                                       |
|                           | Figure 13                                                               |
| The motor in the lift do  | oes 120 000 J of work in 8.0 seconds.                                   |
| Calculate the power o     | utput of the motor in the lift.                                         |
| Use the equation:         | Power output = $\frac{\text{work done}}{\text{time}}$                   |
|                           | [2 m                                                                    |
|                           |                                                                         |
|                           |                                                                         |
|                           |                                                                         |
|                           |                                                                         |

Answers: gcserevisionbuddy.co.uk/answer-253

Power output = \_\_\_\_\_ W



| Energy is transferred in heating the surroundings.  Friction causes energy to be transferred in non-useful ways.  The motor is connected to the mains electricity supply.  The motor is more than 100% efficient.  There are only four people in the lift.  Write down the equation that links gravitational field strength, gravitational potential energy, height and mass.  [1 ma]  The lift goes up 14 m. The total mass of the people in the lift is 280 kg. gravitational field strength = 9.8 N/kg  Calculate the increase in gravitational potential energy of the people in the lift.  Give your answer to 2 significant figures. | The po         | wer input to the | motor is gree     | ater triair trie | power outpu      |                 |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|-------------------|------------------|------------------|-----------------|------------------|
| Friction causes energy to be transferred in non-useful ways.  The motor is connected to the mains electricity supply.  The motor is more than 100% efficient.  There are only four people in the lift.  Write down the equation that links gravitational field strength, gravitational potential energy, height and mass.  [1 ma  The lift goes up 14 m. The total mass of the people in the lift is 280 kg. gravitational field strength = 9.8 N/kg  Calculate the increase in gravitational potential energy of the people in the lift.  Give your answer to 2 significant figures.                                                      | Tick <b>tw</b> | o reasons why    |                   |                  |                  |                 | [2 mark          |
| The motor is connected to the mains electricity supply.  The motor is more than 100% efficient.  There are only four people in the lift.  Write down the equation that links gravitational field strength, gravitational potential energy, height and mass.  [1 ma]  The lift goes up 14 m. The total mass of the people in the lift is 280 kg. gravitational field strength = 9.8 N/kg  Calculate the increase in gravitational potential energy of the people in the lift.  Give your answer to 2 significant figures.                                                                                                                   | Energy         | is transferred i | in heating the    | surrounding      | JS.              |                 |                  |
| The motor is more than 100% efficient.  There are only four people in the lift.  Write down the equation that links gravitational field strength, gravitational potential energy, height and mass.  [1 ma  The lift goes up 14 m. The total mass of the people in the lift is 280 kg. gravitational field strength = 9.8 N/kg  Calculate the increase in gravitational potential energy of the people in the lift.  Give your answer to 2 significant figures.                                                                                                                                                                             | Friction       | n causes energ   | y to be transfe   | erred in non-    | useful ways.     |                 |                  |
| There are only four people in the lift.  Write down the equation that links gravitational field strength, gravitational potential energy, height and mass.  [1 ma]  The lift goes up 14 m. The total mass of the people in the lift is 280 kg. gravitational field strength = 9.8 N/kg  Calculate the increase in gravitational potential energy of the people in the lift.  Give your answer to 2 significant figures.                                                                                                                                                                                                                    | The mo         | otor is connecte | ed to the main    | s electricity    | supply.          |                 |                  |
| Write down the equation that links gravitational field strength, gravitational potential energy, height and mass.  [1 ma]  The lift goes up 14 m. The total mass of the people in the lift is 280 kg.  gravitational field strength = 9.8 N/kg  Calculate the increase in gravitational potential energy of the people in the lift.  Give your answer to 2 significant figures.                                                                                                                                                                                                                                                            | The mo         | otor is more tha | ın 100% efficio   | ent.             |                  |                 |                  |
| energy, height and mass.  [1 ma  The lift goes up 14 m. The total mass of the people in the lift is 280 kg.  gravitational field strength = 9.8 N/kg  Calculate the increase in gravitational potential energy of the people in the lift.  Give your answer to 2 significant figures.                                                                                                                                                                                                                                                                                                                                                      | There          | are only four pe | eople in the lift |                  |                  |                 |                  |
| gravitational field strength = 9.8 N/kg  Calculate the increase in gravitational potential energy of the people in the lift.  Give your answer to 2 significant figures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                  | _                 | gravitational    | field strength,  | , gravitational | potential [1 mar |
| Give your answer to 2 significant figures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                  |                   |                  | ople in the lift | t is 280 kg.    |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Calcul         | ate the increase | e in gravitatio   | nal potential    | energy of the    | people in the   | e lift.          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Give y         | our answer to 2  | 2 significant fiç | gures.           |                  |                 | [3 mar           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                  |                   |                  |                  |                 |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                  |                   |                  |                  |                 |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | Increase in ar   | rovitational na   | toptial apera    |                  |                 |                  |

Answers: gcserevisionbuddy.co.uk/answer-253